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PISA: Pixelwise Image Saliency by Aggregating
Complementary Appearance Contrast Measures

With Edge-Preserving Coherence
Keze Wang, Liang Lin, Jiangbo Lu, Member, IEEE, Chenglong Li, and Keyang Shi

Abstract— Driven by recent vision and graphics applications
such as image segmentation and object recognition, computing
pixel-accurate saliency values to uniformly highlight fore-
ground objects becomes increasingly important. In this paper,
we propose a unified framework called pixelwise image saliency
aggregating (PISA) various bottom-up cues and priors.
It generates spatially coherent yet detail-preserving, pixel-
accurate, and fine-grained saliency, and overcomes the limitations
of previous methods, which use homogeneous superpixel based
and color only treatment. PISA aggregates multiple saliency
cues in a global context, such as complementary color and
structure contrast measures, with their spatial priors in the image
domain. The saliency confidence is further jointly modeled with a
neighborhood consistence constraint into an energy minimization
formulation, in which each pixel will be evaluated with multiple
hypothetical saliency levels. Instead of using global discrete opti-
mization methods, we employ the cost-volume filtering technique
to solve our formulation, assigning the saliency levels smoothly
while preserving the edge-aware structure details. In addition,
a faster version of PISA is developed using a gradient-driven
image subsampling strategy to greatly improve the runtime
efficiency while keeping comparable detection accuracy.
Extensive experiments on a number of public data sets suggest
that PISA convincingly outperforms other state-of-the-art
approaches. In addition, with this work, we also create a new
data set containing 800 commodity images for evaluating saliency
detection.

Index Terms— Visual saliency, object detection, feature
engineering, image filtering.
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I. INTRODUCTION

SALIENCY detection aims at highlighting salient
foreground objects automatically from the background,

and has received increasing attentions for many
computer vision and graphics applications such as object
recognition [21], content-aware image retargeting [5], video
compression [29] and image classification [26]. Driven by
these recent applications, saliency detection has also evolved
to aim at assigning pixel-accurate saliency values, going far
beyond its early goal of mimicing human eye fixation. Due
to lacking of a rigorous definition of saliency itself, inferring
the (pixel-accurate) saliency assignment for diversified natural
images without any user intervention is a highly ill-posed
problem. To tackle this problem, a myriad of computational
models [4], [7], [8], [13]–[16], [42]–[44] have been proposed
using various principles or priors ranging from high-level bio-
logical vision [9] to low-level image properties [11]. Focusing
on bottom-up, low-level saliency computation models in this
paper, we identify several remaining issues to be addressed
though existing models have demonstrated impressive
results.

• How to uniformly highlight the salient objects. Natural
images usually contain diverse patterns (i.e. rich
appearances) so that the saliency computed through
the bottom-up feature extraction could be discrete
or incomplete without regard to salient objects. Like
other low-level vision tasks (e.g., image segmentation),
most existing saliency models were built upon color
information only, and they may degenerate when similar
colors distribute on both foreground and background
objects, e.g., Fig. 1(fourth row: f-h). Moreover, these
approaches [2], [3], [8] may render some elements inside
a salient object as non-salient or some elements of
the background as salient, due to their shortcoming on
handling inhomogeneous structures in foreground
(e.g., Fig. 1(third row: e-h)) and background
(e.g., Fig. 1 (second row: e-h)).

• How to make the saliency values coherent with
image content. Several saliency detection approaches
demonstrated impressive results on generating pixelwise
saliency maps [2], [3], [8]. They usually assign the
saliency values based on the over-segmentation of images
(i.e. small regions or superpixels), and further exploit the
post-relaxation (e.g. local filtering) to smooth the saliency
values over pixels. However, the image segmentation may
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Fig. 1. Saliency maps computed on (a) four example images by (d) the proposed PISA method and (e-h) a few competing bottom-up saliency detection
methods [2], [3], [8]. The results generated by PISA with only color/structure contrast feature are shown in (b/c). (a) Original. (b) Color info. (c) Structure
info. (d) PISA. (e) CA [8]. (f) HC [3]. (g) RC [3]. (h) SF [2].

introduce errors in processing complex image content
(e.g., local cluttered textures), upon which the incompat-
ibility with saliency values and object details could be
caused by the post-relaxation step. These phenomenons
are exhibited with the examples in Fig. 1(first row: g-h).

Inspired by the insights and lessons from a significant
amount of previous work as well as several priors supported
by psychological evidences and observations of natural
images, we address these above mentioned challenges
in a more holistic manner. In particular, we propose a
unified framework called PISA, which stands for Pixelwise
Image Saliency Aggregating complementary saliency cues.
It enables to generate spatially coherent yet detail-preserving,
pixel-accurate and fine-grained image saliency. In the
following, we briefly discuss the motivations and main
components of PISA.

i) Complementary Appearance Features for Measuring
Saliency: Though color information is a popular saliency
cue used dominantly in many methods [2], [3], [12], [28],
other influential factors do exist, which can also be used
to make salient pixels or regions outstanding, even these
pixels or regions are not unique or rare by color information.
For instance, they can have unique appearance features
in edge/texture patterns [4], demonstrating distinct contrast
expressed by structure information. In fact, color and structure
can be complementary to each other to provide more infor-
mative evidences for extracting complete salient objects.
In addition, it is known from the perceptual research [6] that
different local receptive fields are associated with different
kinds of visual stimuli, so local analysis regions where saliency
cues are extracted should be adapted to match specific image
attributes.

Instead of using color only treatment, PISA directly
performs saliency modeling for each individual pixel on
two complementary cues (i.e. color and structure features) and
makes use of densely overlapping, feature-adaptive observa-
tions for saliency confidence computation. Fig. 1 shows a few
motivating examples that highlight the advantage of our PISA
method, compared with some leading methods [2], [3], [8].

ii) Non-Parametric Feature Modeling in a Global Context:
Existing saliency detection approaches usually group image
pixels based on local small regions or superpixels [2], [3], [13],
which could give rise to less informative saliency measures.
In contrast, using non-local approaches to summarize the
extracted features [39]–[41] tends to be more robust and
reasonable than those of local homogeneous superpixel-based
methods, and its advantage has been demonstrated in recent
works [12], [31].

Rather than using superpixel-based representations,
we propose to compute the saliency confidence by considering
both the global appearance contrast in the feature space as
well as the image domain smoothness. Specifically, we
first group all image pixels by summarizing their extracted
features (i.e. either the color or structure histograms), and
model the saliency confidence according to the global rarity
(i.e. uniqueness) of the pixel group in the color/structure
feature space. Meanwhile, we further impose the spatial priors,
including the center preference and boundary exclusion in
the image domain to complete the saliency modeling for each
pixel.

iii) Fine-Grained Saliency Assignment: Many high level
tasks prefer generating more abundant and fine-grained
saliency maps (i.e. each pixel can be assigned with several
saliency levels). Pixel-accurate saliency maps are often
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required to be spatially coherent with discontinuities well
aligned to image edges, according to existing studies [2], [30].
In particular, the spatial connectivity and correlation involved
in neighborhood pixels should be preserved in saliency
computing.

In this work, we pose the fine-grained saliency assignment
as a multiple labeling problem, in which the appearance
contrast based saliency measure is jointly modeled with
the neighborhood coherence constraint. The resulting target
function can be minimized by using global discrete labeling
optimizers such as graph cuts [25] or belief propagation [38].
These methods, however, are often relatively time-consuming
and do not scale well to fine-grained labeling (i.e. a large
space of labels). Some other continuous approaches are effi-
cient but usually require a restricted form of the energy
function. In this paper, we employ a recently proposed filter-
based method, namely cost-volume filtering [27], to smoothly
assign the saliency levels while preserving structural coherence
(i.e. keeping the edges and boundaries of salient objects).

To balance the accuracy-efficiency trade-off, we also pro-
pose a faster version called F-PISA. It first performs saliency
computation for a feature-driven, subsampled image grid, and
then uses an adaptive upsampling scheme with the color image
as the guidance signal to recover a full-resolution saliency
map. Compared to segmentation-based saliency methods [2],
our F-PISA method reduces the computational complexity
similarly by considering a coarse image grid, while having the
advantage of utilizing image structural information for saliency
reasoning over [2]. Our extensive experiments on six public
benchmarks demonstrate the superior detection accuracy
and competitive runtime speed of our approaches over the
state-of-the-arts. Moreover, we construct a new and mean-
ingful database of image saliency including real commodity
images from online shops.1

The remainder of the paper is organized as follows:
Sect. II reviews related works of saliency detection. Sect. III
introduces the proposed framework and its main components.
More details for inference and implementation are discussed
in Sect. IV. Extensive experimental evaluations and compar-
isons are presented in Sect. V. The paper concludes in Sect. VI.

II. RELATED WORK

Recently, numerous bottom-up saliency detection models
have been proposed for explaining visual attention based on
different mathematical principles or priors. We classify most of
the previous methods into two basic classes depending on the
way that saliency cues are defined: contrast priors and back-
ground priors [7]. Assuming that saliency is unique and rare in
appearance, contrast priors have been widely adopted in many
previous methods to model the appearance contrast between
foreground salient objects and the background. Itti et al. [4]
presented a bottom-up method in which an input image is
represented with three features including color, intensity and
orientation in different scales. Achanta et al. [1] proposed a
frequency-tuned method that defines the saliency likelihood of

1The dataset and source code of PISA can be downloaded at
http://vision.sysu.edu.cn/project/PISA/

each pixel based on its difference from the average image color
by exploiting the center-prior principle. Goferman et al. [8]
used a patch based approach to incorporate global properties
to highlight salient objects along with their contexts. However,
due to using the local contrast only, it tends to produce
higher salient values near edges. To highlight the entire object,
Cheng et al. [3] presented color histogram contrast (HC) in the
Lab color space and region contrast (RC) in a global scope.
Perazzi et al. [2] formulated saliency estimation using two
Gaussian filters by which color and position are respectively
exploited to measure region uniqueness and variance of the
spatial distribution. Yan et al. [22] proposed a hierarchical
framework that infers important values from three image
layers in different scales. Also using a hierarchical indexing
mechanism, Cheng et al. [12] proposed a Gaussian Mixture
Model based abstract representation which decomposes an
image into large scale perceptually homogeneous elements.
But their saliency cues integration based on the compactness
measure may not always be effective. Typical limitations of the
existing methods based on contrast priors include attenuated
object interior and ambiguous saliency detection for images
with rich structures in foreground or/and background.

Complementing the prime role of contrast priors in this
research topic, background priors [7] have been proposed
recently to exploit two interesting priors about backgrounds –
connectivity and boundary priors. The background prior
is based on an observation that the distance of a pair of
background regions is shorter than that of a region from the
salient object and a region from the background. Wei et al. [7]
exploited background priors and the geodesic distance for the
saliency detection. Yang et al. [37] proposed a graph-based
manifold ranking approach to characterize the overall differ-
ences between salient objects and background. Jiang et al. [35]
integrated the background cues into the designed absorbing
Markov chain. Regarding image boundaries as likely cues
for background templates, Li et al. [34] proposed a saliency
detection algorithm from the perspective of dense and sparse
appearance model reconstructions. However, these methods
fail when objects touch the image boundary to quite some
extent, or when connectivity assumptions are invalid in the
presence of complex backgrounds or textured scenes. For
instance, the maple leave case in Fig. 1 poses a challenge
for the method [7].

Energy minimization based methods have also been
introduced for saliency detection. Liu et al. [44] proposed
a nonparametric saliency model based on kernel density
estimation (KDE). Jiang et al. [36] proposed an iterative
energy minimization framework to integrate both bottom-
up salient stimuli and an object-level shape prior. Treating
saliency computation as a regression problem, Jiang et al. [43]
integrated regional contrast, regional property and regional
backgroundness. Chang et al. [42] proposed to account for
the relationships of objectness and saliency by iteratively
optimizing an energy function.

This paper provides a more complete understanding
of the PISA algorithm first presented in the conference
version [31], giving further background, insights, analysis,
and evaluation. Furthermore, we improve the previous
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Fig. 2. The main flowchart of PISA. The original image is on the top, Uc/U g

denotes the color/structure contrast measure, and Dc/Dg denotes the spatial
prior term corresponding to the certain feature measure.

framework in two aspects. First, the improved PISA is cast
as the energy minimization problem, which efficiently solved
by the edge-aware cost-volume filter to generate the spatially
coherent and fine-grained saliency maps in one shot. Second,
for suppressing the effect of background, a more general
spatial prior is integrated in our framework to obtain more
compact saliency maps.

III. PROBLEM FORMULATION

In this section, we introduce the formulation of PISA, and
briefly overview the main components.

Given an input image I , the objective of PISA is to
extract salient objects automatically and assign consistently
high saliency levels to them. Without loss of generality, we
achieve this goal by minimizing the following energy function

E =
∑

p∈I

A(Sp) + C(Sp), (1)

where A(Sp) represents the cost of labeling pixel p with the
saliency level Sp , which composes the data term according to
the contrast based measures. C(Sp) defines the neighborhood
coherence to preserve the local structures and edges centered
at p. We further specify A(Sp) as

A(Sp) = ‖Sp − f (p)‖2
2, (2)

where f (p) denotes the normalized feature measure of p,
aggregating two complementary contrast measures defined in
a global context. Fig. 2 illustrates the main flowchart of PISA.

A. Feature-Based Saliency Confidence

We introduce two types of features to capture contrast infor-
mation of salient objects with respect to the scene background.
They are a color-based contrast feature and a structure-based
contrast feature, each of which is further integrated with the
spatial priors holistically. These two features complement each
other in detecting saliency cues from different perspectives,
and are combined together in a pixelwise adaptive manner to
measure the saliency. More formally, given an image I , we
compute the feature-based saliency confidence f̂ (p) for each
pixel p by aggregating the two contrast measures (i.e. the
uniqueness in the feature spaces) {Uc(p), U g(p)} with the
spatial priors {Dc(p), Dg(p)}, as

f̂ (p) = Uc(p) · Dc(p) + U g(p) · Dg(p). (3)

Appearance Contrast Term {Uc(p), U g(p)}. The contrast
measure is proposed based on the observation or principle
that rare or infrequent visual features in a global context
give rise to high salient values [2], [3], [7]. Here we exploit
the structure-based contrast measure in addition to the well
exploited color-based contrast measure, and we fuse the
two measures {Uc(p), U g(p)} to achieve better performance.
Uc(p) denotes the uniqueness of pixel p with respect to the
entire image in the color feature space, and U g(p) denotes
the uniqueness of pixel p in the orientation-magnitude (OM)
feature space. Their detailed implementations will be discussed
in Sect. IV-B1 and Sect. IV-B2, respectively. Instead of
describing the features for pixel p via its assigned superpixel,
we use the non-parametric histogram distribution to capture
and represent both the color and structure features with an
appropriate observation region around p. It is worth mention-
ing that our framework is very general to incorporate more
saliency cues in the similar way.

Spatial Priors Term {Dc(p), Dg(p)}. They are evaluated
based on the generally valid spatial prior that salient pixels
tend to distribute near the image center and away from
the image boundary, i.e. people tend to frame an image by
placing salient objects of interest in the center with back-
ground borders. Thus, we integrate the image center preference
and boundary exclusion in the saliency reweighting process.
We use Dc(p) and Dg(p) to denote the integration of
image center spatial distance and image boundary exclusion
of visually similar peers on the color and structure contrast
measurement, respectively (Sect. IV-B3). After reweighting the
above saliency measurement based on appearance contrast, we
keep the salient pixels compact and centered with the exclusion
to the image boundary in the image domain.

We normalize the feature-based saliency confidence to the
discrete saliency level set {0, 1, ...,L− 1} for further calculat-
ing the label cost A(Sp). This normalization is given by the
following sigmoid-like function:

f (p) = R(
L − 1

1 + exp(− f̂ (p))
), (4)

where R denotes a rounding function, which rounds a
float-point number to the nearest integer, and L − 1 is the
user defined maximum saliency level. We fix L to 24 in our
all experiments.
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B. Coherence Constraint

To suppress spurious noises and non-uniform saliency
assignment, we further incorporate the spatial connectivity
and correlation constraint among neighborhood pixels together
with the feature-based measures. The saliency level Sp for
pixel p should be consistent with its neighborhood pixels
which have similar appearance with p within its local
observation region �p in the image domain. The coherence
constraint C(Sp) can be thus defined as

C(Sp) =
∑

q∈�p

ωpq‖Sp − Sq‖2
2, (5)

where the observation window �p for the anchor pixel p
delineates an arbitrarily-shaped and connected local sup-
port region (see Fig. 4), q represents a neighboring pixel
to p in �p , and Sq is the saliency level assigned to q .
ωpq encodes the similarities between p and q within �p,
which will be explained in the next section.

IV. PROPOSED APPROACH

In this section, we unfold the framework of PISA and
discuss the implementation details. In addition, a faster version
of PISA, namely F-PISA, is also developed to greatly improve
the runtime efficiency and keep comparable performance.

A. Pixelwise Adaptive Observation

Unlike the traditional methods [3], [21] that usually process
fixed-size windows or over-segmented superpixels, PISA com-
putes saliency by generating an arbitrarily-shaped observation
region for each pixel in the image. This pixelwise observation
plays a key role in feature extraction and fine-grained saliency
assignment.

For a pixel p centered at a square window Wp , we
first define a color similarity criterion for a test pixel q
as follows,

|Ic(q) − Ic(p)| ≤ τ, c ∈ {R, G, B}, q ∈ Wp, (6)

where Ic is the intensity of the color band c of the 3 × 3
median smoothed input image I . Set empirically, L denotes
the preset maximum arm length of the observation window Wp

centered at pixel p (the size of Wp is (2L + 1) × (2L + 1)),
and τ controls the confidence level of the color similarity. The
method of generating �p follows our previous study in image
filtering (i.e. Cross-based Local Multipoint Filtering) [17].
We first decide a pixelwise adaptive cross with four arms
(left, right, up, bottom) for every pixel p. By changing four
arms of every pixel p adaptively, the local image structure
is captured reliably. These arms record the largest left/right
horizontal and up/bottom vertical span of the anchor pixel p,
where all the pixels covered by the arms are similar to pixel p
in color (i.e. they satisfy Eqn. (6)). Let H (p) and V (p)
denote all the pixels covered by the horizontal and vertical
arms of the pixel p, respectively. Let q denote any pixel
covered by the vertical arms of the pixel p (i.e. q ∈ V (p)),
as shown in Fig. 3. Then we can further construct the

Fig. 3. Illustration of generating a pixelwise adaptive observation region [17].
The left subfigure shows the construction of the shape-adaptive observation
window for pixel p, and the right subfigure shows the weighted aggregation
of each k ∈ �p .

arbitrarily-shaped, connected local observation window �p by
integrating multiple H (q) sliding along V (p)

�p =
⋃

q∈V (p)

H (q). (7)

B. Color and Structure-Based Saliency Measures

1) Color-Based Contrast: Directly computing pixelwise
color contrast in a global image context is computationally
expensive, as its complexity is O(N2) with N being the
number of pixels in the image I . Recently, Cheng et al. [3]
proposed an effective and efficient color-based contrast mea-
sure, i.e., histogram-based contrast (HC). They assume that
if neglecting spatial correlations, pixels with the similar color
value should have the same saliency value. However, without
taking the neighborhood of pixels into consideration, their
strategy of defining contrast on color information of individual
pixels is sensitive to noise, and it is not extensible for measur-
ing additional attributes. In this work, we compute the color
contrast based on a non-parametric color distribution extracted
from a local homogeneous region. As pixels within the homo-
geneous region share similar appearance with the central pixel,
it is more robust to define a contrast measure on color infor-
mation of homogeneous regions rather than individual pixels.

For each pixel p, we first construct a local observation
region efficiently as described in Sect. IV-A. A color histogram
hc(p) for pixel p is then built from the pixels q ∈ �p covered
in the localized homogeneous region. Using hc(p) rather than
Ip is more consistent with psychological evidences on human
eyes’ receptive field on homogeneous regions. Using the Lab
color space, we quantize each color channel uniformly into
12 bins, so the color histogram hc(p) is a 36-d descriptor
(see Fig. 4).

Next, we cluster pixels that share similar color histograms
together using kmeans. The whole color feature space for the
input image I is then quantized into Kc clusters, indexed by
{φ1, . . . , φKc }. As a result, we use the rarity of color clusters as
the proxy to evaluate the rarity or contrast measure of pixels.
Let φp denote the cluster that pixel p, or more precisely hc(p),
is assigned to. We estimate the color-based contrast measure
Uc(p) for pixel p as

Uc(p) = Uc(hc(p)) =
Kc∑

i=1

ωi‖hc(φi ), hc(φp)‖, (8)
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Fig. 4. The color descriptor is extracted from the shape-adaptive
region �p/p′ (top) and the orientation-magnitude (OM) descriptor captures
the structures within a local window Wp/p′ (bottom).

Fig. 5. Color-based contrast measure. (a) Assigning the pixels into
eight clusters in the color feature space. (b) The input image from [1].
(c) Color contrast measure Uc . (d) Spatial prior Dc . (e) Spatial prior-
modulated color measure Uc · Dc.

where ωi uses the number of pixels belonging to the cluster φi

as a weight to emphasize the color contrast to bigger clusters,
and hc(φp) is the average color histogram of cluster φp.
Fig. 5(a) illustrates an example image with eight color clusters
and their contrast measure Uc(p).

Feature space quantization may cause undesirable artifacts.
When directly calculating the L2 distance of histograms or
giving an inappropriate cluster number Kc, similar color
histograms can sometimes be quantized into different clusters.
We tackle this problem in three aspects: i) Improve clustering
with color dissimilarity. We sightly modify kmeans in its dis-
tance when clustering. In addition to the L2 distance between
the two histograms, we add the color dissimilarity between
the center pixels into the distance measurement. ii) Decide Kc

adaptively according to the histogram distribution. The cluster
number Kc of the color feature space is adaptively decided
with regard to the image content. Similar to that used in [3], we
choose the most frequently occurring color features by ensur-
ing they cover 95% of the histogram distributions of all pixels
in the input image I . iii) Reweight the salient values of clusters
with respect to their visual similarities. We adopt a linearly-
varying smoothing scheme [3] to refine the quantization-based
saliency measurement. The saliency value of each cluster is

replaced by the weighted average of the saliency values of
visually similar clusters. Larger weights are assigned to those
clusters which share similar color features. Such a refinement
smooths the saliency assignments to each pixel.

Our proposed method that computes the color contrast based
on non-parametric color distribution reduces the computational
complexity from O(N2) to O(N · Kc) + O(K 2

c ), where the
second term corresponds to the complexity of kmeans and
usually is very small. As we observed, Kc typically takes
values in the range of 6 to 403 in the ASD dataset [1] which
contains 1000 images.

2) Structure-Based Contrast: As discussed in Sect. I, using
only color information is not adequate to completely depict
salient objects or parts of them against the non-salient back-
ground. Even though in the cases that the color-based measure
produces good results, other complementary measures can still
contribute to reinforce the saliency assignment. Therefore, we
propose a structure-based measure to complement the color-
based contrast measure here. The proposed structure-based
measure models the image gradient distribution for every
pixel p by a histogram hg(p) in a rectangular region Wp .
hg(p) measures the occurrence frequency of a concatenated
vector consisting of a gradient orientation component and a
gradient magnitude component. Similarly, we quantize both
components into eight bins, and call the resulting feature space
the OM space. It is clear that a point in such a OM space
is 16-d (see Fig. 4). In this paper, we fix the local window
Wp to the same size as the maximum observation window of
the color histogram extraction for the comparability. As will be
shown later, we find that our OM structure descriptor, though
simple, is more effective and reliable than other gradient
features such as Gabor [20] and LBP [23] in the image saliency
detection task.

Similar to the color contrast measure, kmeans is utilized
to partition the OM feature space into Kg clusters, indexed
by {ϕ1, . . . , ϕKg }. The structure contrast measure for pixel p
is equivalent to measuring that of the cluster ϕp which p is
grouped to as

U g(p) = U g(hg(p)) =
Kg∑

i=1

ωi‖hg(ϕi ), hg(ϕp)‖, (9)

where ωi is the weight stressing the contrast against bigger
clusters, and hg(ϕp) is the average OM histogram of the
cluster ϕp .

U g may suffer from the influence of side effects caused
by the brute-force feature space quantization process. Again,
we alleviate these artifacts by adopting the same strategy
illustrated in Sect. IV-B1. i.e., using slightly modified
kmeans, determining the cluster number Kg adaptively by
representing the most frequent OM vectors and accounting
for at least 95% pixels, and applying local smoothing scheme.
We observe Kg typically varies from 11 to 43 in the ASD
dataset [1].

3) Spatial Priors: Motivated by recent works [2], [8],
[16], [37], we impose a spatial prior term on each of the
two contrast measures {Uc(p), U g(p)}, constraining pixels
rendered salient to be centered and excluded to the image
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boundary in the image domain based on the image center
preference and the image boundary exclusion. For each
pixel p, we evaluate the initial spatial prior term D̃c/g(p)
based on the cluster φi/ϕi that contains p from two aspects:
i) preference to the image center, and ii) exclusion to the image
boundary. Combining these two criteria, we compute D̃c/g(p)
as follows:

D̃c/g(p) =
n p∑

l=1

(
‖xl , c‖2

n p
+ λ · 1�(xl)

|�| ), (10)

where n p is the number of pixels which are contained in
the same color (or OM) cluster φi (or ϕi ) with p. c is
the image center position. � indicates the image border
region, which is formed by the pixels close to the image
borders. As a matter of fact, this region typically belongs to
non-salient background. Thus, we incorporate the

∑
1�(·)
|�| as

the probability of φi /ϕi belonging to the image border region.
We use a user-specified parameter λ to control the relative
weight of the image boundary exclusion. Fig. 5 (d) and (e)
illustrate the spatial prior together with using the color-based
measure and the effectiveness for saliency assignment.

Since clusters closer to the image border or farther from
the image center are often unlikely to be salient, we compute
the final spatial prior term Dc/g(p) for pixel p using a
threshold T as

Dc/g(p) =
{

exp(−κ · D̃c/g(p)); D̃c/g(p) ≤ T
0; otherwise.

(11)

where κ controls the fall-off rate of the exponential function.
By now we have defined all the four terms necessary for
computing f̂ (p) in Eqn. (3).

C. Fine-Grained Saliency Assignment

Our goal is to assign each pixel p in the image I
to a saliency level S from the discrete saliency level set
{0, 1, ...,L − 1}, with the formulation in Eqn. (1). This is a
multi-labeling minimization task integrating a data term and a
smoothness term. Instead of using global discrete optimization
methods, we employ the cost-volume filtering technique [27]
to achieve this goal, which computes the discrete assignment
efficiently while keeping local labeling coherence. Specifically,
this method aggregates the label costs within a support window
by applying a local edge-preserving smoothing filter, and then
selects the label in a Winner-Takes-All fashion. The fine-
grained saliency is computed for each pixel with the following
steps.

(i) Constructing the Cost-Volume: Following [27], the
cost-volume is a 3D array, and each element Vp,S in the array
represents the cost for choosing a saliency level S at pixel p.
We compute Vp,S as the square difference between S and the
normalized feature-based saliency measure f (p):

Vp,S = ‖S − f (p)‖2
2. (12)

(ii) Filtering the Cost-Volume: To smooth the label costs in
the image domain, the cost-volume will be further filtered with
an edge-preserving filter. The original cost volume filtering
method uses the guided filter [32], which employs fixed-sized

square observation windows, and it derives the output of the
filtering simply as an average of multiple linear regression
results from shifted windows of neighboring pixels.

In this work, to incorporate the local edge-aware coherence
(Eqn. (5)) and also to achieve more efficient runtime, we
extend the guided filter into a new form based on the pixelwise
adaptive observation [17]. Specifically, for pixel p we estimate
the correlation of p and its neighbor k ∈ �p by

ωp,k = |�k|∑
k∈�p

|�k| , (13)

where �k is the observation region of pixel k (a neighbor
of p), and |�k| denotes the number of pixels in �k . Intuitively,
the correlation of pixel p and the neighbor k is proportional
to |�k |. We refer to [17] for the technical background. The
cost of p can be updated by the weighted average of the initial
costs of all pixels in �p as

V
′
p,S =

∑

k∈�p

ωp,k Vk,S . (14)

This step encourages the saliency values to be smooth in the
homogeneous regions and also preserves the object details (e.g.
edges and structures) in the fine-grained saliency assignment.

(iii) Winner-Takes-All Label Selection: After the cost-
volume is updated, the final saliency level Sp at pixel p is
selected by

Sp = arg min
S

V ′
p,S . (15)

D. F-PISA: Fast Implementation

Salient object detection is always cast as a preprocessing
technique for subsequent applications, which demands a
fast and accurate solution. To optimize accuracy-complexity
trade-off, we present a faster version F-PISA, which contains
well-designed algorithmic choices. Instead of processing the
full image grid, we perform a gradient-driven subsampling of
the input image I , so the saliency computation in Eqn. (1) is
only applied to this set of selected pixels. More specifically,
for a given image I , we pick the pixel with the largest
gradient magnitude from a 3×3 rectangular patch on the
regular image grid to form a sparse image I l . The two
proposed contrast saliency measures with edge-preserving
coherence are then computed for I l , giving a sparse saliency
map Sl . To obtain a full-resolution saliency map S, we
propagate the saliency values among pixels in the same
pixel-adaptive observation region, as they share the similar
appearance. This propagation scheme resembles the principle
of joint bilateral upsampling [24], using a high-resolution
color image I as a guidance to upsample a sparsely-valued
solution map Sl . It can produce a smoothly varying dense
saliency map S without blurring the edges of salient objects.
Thus given a pixel p ∈ I , its saliency value is obtained as

S(p) = 1

m

m∑

i=1

wp,ki Sl(ki ), (16)

where ki belongs to I l and its pixel-adaptive support
region �ki contains p, m is the total number of such
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pixels, and wp,ki = exp(−‖xp,xki ‖
σ ). In Sect. V, we evaluate

the performance of this fast version quantitatively and
qualitatively on six public benchmark datasets.

V. EXPERIMENTS

We present empirical evaluation and analysis of the
proposed PISA against several state-of-the-art methods
(including the conference version [31]) on six public available
datasets. We further analyze the effectiveness of the two
complementary components, i.e., color-based contrast measure
and structure-based contrast measure, as well as their corre-
sponding spatial priors (image center preference and boundary
exclusion). We justify the importance of the proposed energy
minimization framework and the sigmoid-like function for
the feature-based saliency confidence normalization. At last,
we discuss our limitations through failure cases.

A. Description of Datasets

We evaluate the proposed methods on six public avail-
able datasets. They are ASD [1], SOD [18], SED1 [19],
ECSSD [22], PASCAL-1500 [33] and the Taobao Commod-
ity Dataset (TCD)2 newly created by us. The ASD is also
called MSRA-1000 which contains 1000 images with accurate
human-labeled masks for salient objects and has been widely
used by recent methods. The SOD dataset is more challenging
with complex objects and scenes included in its 300 images,
and we obtain the ground-truth for this dataset from the authors
of the work [7]. The SED1 dataset is exploited recently which
contains 100 images of single objects, and we consider a
pixel salient if it is annotated as salient by all subjects. The
ECSSD contains 1000 diversified patterns in both background
and foreground images, which includes many semantically
meaningful but structurally complex images for evaluation.
The PASCAL-1500, created from PASCAL VOC 2012, is
also a challenge dataset, in which the images contain multiple
objects appearing at a variety of locations and scales with
cluttered background. The TCD dataset that we make available
with this paper contains 800 commodity images from the
shops on the Taobao website. The ground truth masks of
the TCD dataset are obtained by inviting common sellers of
Taobao website to annotate their commodities, i.e., masking
salient objects that they want to show from their exhibition.
These images include all kinds of commodity with and without
human models, thus having complex backgrounds and scenes
with highly complex foregrounds.

B. Experimental Setup

We choose the total saliency level L = 24. For the step of
generating pixelwise adaptive observation, we set {τ , L} =
{60, 10} to extract color features and build saliency coherence
support regions. We set {λ, κ, δ,T } = {2.5 × 104, 0.006,
0.001, 30}. While for F-PISA, we set {τ , L} = {50, 5} and
{λ, κ, δ,T } = {2 × 103, 0.035, 0.001, 30}. These parameters
are fixed in all experiments for the six datasets.

2http://vision.sysu.edu.cn/project/PISA/

We use (P)recision-(R)ecall curves (PR curves), F0.3 metric
and MAE to evaluate all the algorithms. Given the binarized
saliency map via the threshold value from 0 to 255, precision
means the ratio of the correctly assigned salient pixel number
in relation to all the detected salient pixel number, and recall
means the ratio of the correct salient pixel number in relation
to the ground truth number. Different from (P)recision-(R)ecall
curves using a fixed threshold for every image, the F0.3 metric
exploits an adaptive threshold of each image to perform the
evaluation. The adaptive threshold is defined as

T = 2

W × H

W∑

x=1

H∑

y=1

S(x, y), (17)

where W and H denote the width and height of an image,
respectively. The F-measure is defined as follows with the
precision and recall of the above adaptive threshold:

Fβ2 = (1 + β2) · Precision · Recall

β2 · Precision + Recall
, (18)

where we set the β2 = 0.3 to emphasize the precision as sug-
gested in [1]. As pointed out in [2], PR curves and F0.3 metric
are aimed at quantitative comparison, while Mean Absolute
Error (MAE) are better than them for taking visual comparison
into consideration to estimate dissimilarity between a saliency
map S and the ground truth G, which is defined as

M AE = 1

|I |
∑

p

|Sp − G p|, (19)

where |I | is the number of image pixels.

C. Experimental Results and Comparisons

We compare our methods with thirteen recent state-
of-the-art works: Dense and Sparse Reconstruction
(DSR) [34], Global Cues (GC) [12], Histogram-based
Contrast (HC) [3], Context-Aware saliency (CA) [8],
Frequency-Tuned saliency (FT) [1], Spectral Residual
saliency (SR) [11], Spatial-temporal Cues (LC) [10], Context-
Based saliency (CB) [36], Markov Chain saliency (MC) [35],
Hierarchical Saliency (HS) [22], Graph-based Manifold
ranking (GM) [37], Saliency Filter (SF) [2], and Region-
based Contrast (RC) [3]. Whenever they are available, we
use the author-provided results. Results of HC, FT, SR, LC,
RC are generated by using the codes provided by [3], and we
adopt the public implementations from the original authors
for DSR, GC, CA, CB, HS, GM, MC and SF. Note that the
saliency maps of all methods are mapped to the range [0, 255]
by the same max-min normalization method for the further
evaluation. The evaluation results are shown in Fig. 6 and 7,
respectively.

In Fig. 6, based on the PR curves of ASD, SOD and
SED1, our proposed method PISA performs nearly the same
as compared methods. To evaluate the overall performance
of the PR curve, we calculate the average precision, which
is the integral area under the PR curve. For the ASD
dataset, our PISA, DSR, HS, GM and MC all achieve more
than 93.0% accuracy, while the average precision of PISA
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Fig. 6. PR curves (first and second row), F0.3 metric (third row) and MAE (fourth row) for comparing previous works with the proposed PISA and F-PISA
methods on the three datasets from left to right: (a) ASD [1], (b) SOD [18], (c) SED1 [19], respectively. Our proposed methods PISA/F-PISA perform nearly
the same as the state of art methods.

is 1.5%, 0.6%, 2.1%, 1.7% less than DSR, HS, GM, MC,
respectively. For the SOD dataset, PISA, DSR and MC all
achieve more than 80% accuracy, while the average precision
of PISA is 0.5% better than both of them. For the SED1

dataset, PISA, DSR, HS, GM and MC all achieve more
than 90.0% accuracy, while the average precision of PISA is
only 2.8% less than GM. Based on the F0.3 metric in Fig. 6,
PISA obtains 2% less than GM/MC on ASD, 0.5% less than
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Fig. 7. PR curves (first and second row), F0.3 metric (third row) and MAE (fourth row) for comparing previous works with the proposed PISA and F-PISA
methods on the three datasets from left to right: (a) ECSSD [22], (b) PASCAL-1500 [33], (c) proposed TCD, respectively. Our proposed methods PISA/F-PISA
perform consistently better than the other methods.

DSR/MC on SOD, 4% less than GM/MC on SED1. Based
on the MAE in Fig. 6, PISA obtains the best results on the
SOD datasets and advances together with the best method
GM on ASD/SED1. Hence, compared with all the compared

methods, PISA is only slightly better on SOD, and is only a
little worse on ASD and SED1. Since ASD and SED1 datasets
are simple and not challenging, it is not suitable for showing
the advantage of PISA.
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Fig. 8. Extensive study for different saliency measures in our methods. The experiments are executed on all the six datasets, top row from left to right:
(a) ASD [1], (b) SOD [18], (c) SED1 [19], bottom row from left to right: (d) ECSSD [22], (e) PASCAL-1500 [33], (f) TCD. We can observe the advantage
of aggregating the two complementary contrast measures: structure-based contrast (SC) and color-based contrast (CC).

The superior performance of PISA is demonstrated in Fig. 7.
Based on the PR curves, F0.3 and MAE in Fig. 7, one can
clearly see that our PISA consistently outperforms all the com-
pared methods on ECSSD, PASCAL-1500, TCD, respectively.
In particular, TCD is different in focusing on commodity
images, whose salient objects contain diverse patterns and rich
structure information. This is consistent with our motivations
i) and ii) in Sect I. Designed to meet these objectives, our
PISA achieves clearly higher performance than the compared
methods. In addition, PISA in this paper performs 2% better
than the conference version (PISA-prev) on average, and
readers are encouraged to see the supplementary file for more
details.

D. Component Analysis

We further analyze the effectiveness of the two
complementary measures, i.e. color-based contrast (CC)
and structure-based contrast (SC). The quantitative results
on the six datasets in Fig. 8 demonstrate the requisite of
aggregating the two measures: PISA (SC + CC) performs
consistently better than SC or CC alone. We can observe
that the aggregated saliency detection achieves superior
performance, as CC and SC capture saliency from different
aspects, verified by the visual results in Fig. 1. It is worth
noting that we obtain favorable results on the images in the
second and third rows in Fig. 1, which are exhibited in [3]
and [7] as failure cases. They serve as good evidences to
advocate our choice in fusing complementary saliency cues.

We also analyze the contribution of the introduced
spatial priors, i.e. image center preference and boundary
exclusion. The quantitative results on the six datasets in Fig. 9
illustrate the advantage of introducing these spatial priors.
“without BE” represents the PISA framework without

boundary exclusion (BE) only, while “without CP” represents
without image center preference (CP) only. Justified by the
experiments on the six datasets, the introduced spatial priors
contribute to achieve superior performance, as CP and BE
represent the typical choices when people take pictures.

We also justify the significance of the proposed energy-
minimization framework (Eqn. (1)) by comparing with our
conference framework (PISA-prev Framework) [31]. For
fair comparison, we conduct the experiment with all other
parameters fixed, i.e. they share the same normalized feature-
based saliency measure f (p), and the only difference is the
framework. Fig. 10 demonstrates that our energy-minimization
framework obtains higher precision when the recall belongs
to [0, 0.2] on PR curves and achieves better MAE results.
Thus, by modeling the appearance contrast based saliency
measure and the neighborhood coherence constraint jointly,
the proposed energy-minimization framework can highlight
saliency objects more uniformly.

We have also explored other commonly used features
Gabor [20] and LBP [23] to substitute OM for capturing
structure information. For all the features, we choose their
best results for comparison by tuning their quantizations. The
dimensions for Gabor and LBP features are 72 and 256,
respectively. The PR-curves of the experiments evaluated on
the ASD dataset [1] are shown in Fig. 11. The OM descriptor
outperforms the others. Meanwhile, under the proposed frame-
work, our OM descriptor also shows higher computational
efficiency than Gabor and LBP due to its low dimension.

In our proposed framework, the normalization step, which
maps the feature-based saliency measure f̂ (p) into discrete
saliency level set {0, . . . ,L − 1}, has an impact on the final
saliency maps. Fig. 12 illustrates this impact of different
normalizations, such as commonly used max-min (linear),
log-like (nonlinear), and exp-like (nonlinear). Compared with
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Fig. 9. Extensive study for the components of the proposed spatial prior in our methods. The experiments are executed on all the six datasets, top row from
left to right: (a) ASD [1], (b) SOD [18], (c) SED1 [19], bottom row from left to right: (d) ECSSD [22], (e) PASCAL-1500 [33], (f) TCD. One can observe
the contribution of image center preference (CP) and boundary exclusion (BE).

Fig. 10. Empirical study on PASCAL-1500 [33] for justifying the signif-
icance of the proposed framework, named “PISA Framework”. “PISA-prev
Framework” denotes our conference version.

Fig. 11. Empirical study on two common structure features Gabor and LBP
for replacing the proposed OM features in the PISA framework. Our OM
descriptor performs better on the ASD dataset [1].

the linear normalization, log-like increases the saliency levels
of the whole pixels (Fig. 12(c)), while exp-like decreases
all pixels’ saliency levels (Fig. 12(d)). Sigmoid-like increases
the number of high salient value pixels and reduces those of
low salient value for its S shape (Fig. 12(e)). For exploring
these normalization functions, we conduct the experiment on

Fig. 12. Visual results by different normalization methods. (a) Input
image. (b) Max-min normalization. (c) Log-like normalization. (d) Exp-like
normalization. (e) Sigmoid-like normalization. (f) Ground truth.

Fig. 13. Quantitative results by different normalization methods on PASCAL-
1500 [33]. “sigmoid” denotes the sigmoid-like normalization while “log”,
“exp” and “linear” denote normalization of log-like, exp-like and max-min
normalization, respectively.

the PASCAL-1500 dataset [33] as it is the most challenging
and the largest dataset with F0.3 metric and MAE evaluation.
Note that we discard the PR curves for that the change
of normalization methods will not affect PR results as
long as the mapping is one-to-one. Fig. 13 demonstrates that
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Fig. 14. An example case challenging for PISA. (a) Input image. (b) Color contrast measure. (c) Spatial prior-modulated color measure. (d) Structure contrast
measure. (e) Spatial prior-modulated structure measure. (f) PISA result. (g) Ground truth.

TABLE I

COMPARISON OF THE AVERAGE RUNNING TIME (SECONDS PER IMAGE)

ON THE ASD DATASET [1]

a sigmoid-like function performs a little better in F0.3 metric
and much better in MAE evaluation than others. Thus we
adopt a sigmoid-like normalization (Eqn. (4)) to produce better
visual saliency maps.

E. Efficiency Analysis

The experiments are carried out on a desktop with an Intel
i7 3.4GHz CPU and 8GB RAM. The average runtime with
ranking of our approaches (PISA and F-PISA) and competing
methods on the ASD dataset [1], whose most images have
a resolution of 300 × 400, are reported in Table I. Though
PISA is a little slow (rank 13, slightly faster than our con-
ference version PISA-prev), our fast implementation F-PISA,
significantly improves the efficiency (rank 6, 14 times faster
than PISA), while keeping comparable accuracy (better than
the top five methods in the rank list, see Fig. 6 and 7).
Specifically, for PISA: calculating the normalized feature-
based saliency measure costs 310ms (about 50%), minimizing
the energy function costs 280ms (about 45%), and others cost
30ms (about 5%). For F-PISA: computing saliency costs 30ms
(about 68%), while subsampling and joint bilateral upsampling
costs 12ms (about 27%), and others cost 2ms (about 5%).

F. Limitations

In Fig. 14, we present unsatisfying results generated by
PISA. As our approach uses the spatial priors, it has problems

when such priors are invalid. For example, if the saliency
object occurs near the image boundary to quite extent, some
regions of it can be suppressed (see Fig. 14(first row)) due
to the image boundary exclusion prior. If the center prior
does not hold, the background regions located near the image
center cannot be effectively suppressed in saliency evaluation
(see Fig. 14(second row)). By adjusting the relative contribu-
tion of these priors through tuning λ, we can alleviate their
influences. Thus, the weakness of the proposed methods is: for
any background regions that have been assigned high saliency
values from either of the contrast cues after the modulation
of the spatial priors, they remain salient in the final saliency
map. This problem could be tackled by incorporating high-
level knowledge to adjust the confidence of two measures in
the formulation.

VI. CONCLUSION

We have presented a generic and unified framework for
pixelwise saliency detection by aggregating multiple image
cues and priors, where the feature-based saliency confidence
are jointly modeled with the neighborhood coherence
constraint. Based on the saliency model, we employed the
shape-adaptive cost-volume filtering technique to achieve
fine-grained saliency value assignment while preserving
edge-aware image details. We extensively evaluated our PISA
on six public datasets by comparing with previous works.
Experimental results demonstrated the advantages of our PISA
in detection accuracy consistency and runtime efficiency. For
future work, we plan to incorporate high-level knowledge and
multilayer information, which could be beneficial to handle
more challenging cases, and also investigate other kinds
of saliency cues or priors to be embedded into the PISA
framework.
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