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Abstract

3D human articulated pose recovery from monocular
image sequences is very challenging due to the diverse
appearances, viewpoints, occlusions, and also the human
3D pose is inherently ambiguous from the monocular im-
agery. It is thus critical to exploit rich spatial and tem-
poral long-range dependencies among body joints for ac-
curate 3D pose sequence prediction. Existing approaches
usually manually design some elaborate prior terms and
human body kinematic constraints for capturing structures,
which are often insufficient to exploit all intrinsic structures
and not scalable for all scenarios. In contrast, this paper
presents a Recurrent 3D Pose Sequence Machine(RPSM)
to automatically learn the image-dependent structural con-
straint and sequence-dependent temporal context by using a
multi-stage sequential refinement. At each stage, our RPSM
is composed of three modules to predict the 3D pose se-
quences based on the previously learned 2D pose represen-
tations and 3D poses: (i) a 2D pose module extracting the
image-dependent pose representations, (ii) a 3D pose recur-
rent module regressing 3D poses and (iii) a feature adap-
tion module serving as a bridge between module (i) and
(ii) to enable the representation transformation from 2D to
3D domain. These three modules are then assembled into
a sequential prediction framework to refine the predicted
poses with multiple recurrent stages. Extensive evaluations
on the Human3.6M dataset and HumanEva-I dataset show
that our RPSM outperforms all state-of-the-art approaches
for 3D pose estimation.

1. Introduction
Though quite challenging, recovering the 3D full-body

human pose from a monocular RGB image sequence has re-

∗Corresponding author is Liang Lin. This work was supported by
State Key Development Program under Grant 2016YFB1001004, NSFC-
Shenzhen Robotics Projects(U1613211), and the Fundamental Research
Funds for the Central Universities, and Guangdong Science and Technol-
ogy Program under Grant 201510010126.

Figure 1: Some visual results of our approach (RPSM) on
Human3.6M dataset. The estimated 3D skeletons are re-
projected into the images and shown by themselves from
the side view (next to the images). The figures from left to
right correspond to the estimated 3D poses generated by the
1st-stage, 2nd-stage and 3rd-stage of RPSM, respectively.
We can observe that the predicted human 3D joints are pro-
gressively corrected along with the multi-stage sequential
learning. Best viewed in color.

cently attracted a lot of research interests due to its huge po-
tentials on high-level applications, which includes human-
computer interaction [10], surveillance [14], video brows-
ing/indexing [6] and virtual reality [23].

Besides the challenges shared with 2D image pose esti-
mation (e.g., large variation in human appearance, arbitrary
camera viewpoints and obstructed visibilities due to exter-
nal entities and self-occlusions), 3D articulated pose recov-
ery from monocular imagery is much more difficult since
3D pose is inherently ambiguous from a geometric perspec-
tive [40], as shown in Fig. 1. To resolve all these issues, a
preferable way is to investigate how to simultaneously en-
force 2D spatial relationship, 3D geometry constraint and
temporal consistency within one single model.

Recently, notable successes have been achieved for 2D
pose estimation based on 2D part models coupled with 2D
deformation priors, e.g., [35, 37], and the deep learning
techniques, e.g., [32, 29, 34, 36]. However, these meth-
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ods have not explored the 3D pose geometry that is crucial
for 3D pose estimation. There has been some limited at-
tempts on combining the image-based 2D part detectors, 3D
geometric pose priors and temporal models for generating
3D poses [2, 39, 41, 30]. They mainly follow two kinds
of pipelines: the first [41, 20] resorts to the model-based 3D
pose reconstruction by using external 3D pose gallery, while
the second pipeline [4, 40] focuses on elaborately designing
human body kinematic constraints with the model training.
These separate techniques and prior knowledge make their
models very sophisticated. Hence, validating the effective-
ness of their each component is also not straightforward.
In contrast to all these mentioned methods, we introduce a
completely data-driven approach that learns to integrate the
2D spatial relationship, 3D geometry and temporal smooth-
ness for the network training in a fully differential way.

We propose a novel Recurrent 3D Pose Sequence Ma-
chine (RPSM) for estimating 3D human poses from a se-
quence of images. Inspired by the pose machine [22]
and convolutional pose machine [34] architectures for 2D
pose estimation, our RPSM proposes a multi-stage train-
ing to capture long-range dependencies among multiple
body-parts for 3D pose prediction, and further enforce the
temporal consistency between the predictions of sequen-
tial frames. Specifically, the proposed RPSM recursively
refines the predicted 3D pose sequences by sensing what
already achieved in the previous stages, i.e., 2D pose rep-
resentations and previously predicted 3D poses. At each
stage, our RPSM is composed by a 2D pose module, a
feature adaption module, and a 3D pose recurrent mod-
ule. These three modules are constructed by the integra-
tion of the advanced convolutional and recurrent neural
networks to fully exploit spatial and temporal constraints,
which makes our RPSM with multi-stages a differentiable
architecture that can be trained in an end-to-end way.

As illustrated in Fig. 1, our RPSM enables to gradually
refine the 3D pose prediction for each frame with multiple
sequential stages, contributing to seamlessly learning the
image-dependent constraint between multiple body parts
and sequence-dependent context from the previous frames.
Specifically, at each stage, the 2D pose module takes each
frame and 2D feature maps produced in previous stages as
inputs and progressively updates the 2D pose representa-
tions. Then a feature adaption module is injected to trans-
form learned pose representations from 2D to 3D domain.
The 3D pose recurrent module, constructed by a Long-Short
Term Memory (LSTM) layer, can thus regress the 3D pose
estimation by combining the three lines of information, i.e.
the transformed 2D pose representations, 3D joint predic-
tion from the previous stage and the memorized states from
past frames. Intuitively, the 2D pose representations are
conditioned on the monocular image which captures the
spatial appearance and context information. The 3D joint

prediction implicitly encodes the 3D geometry structural in-
formation by aggregating multi-stage computation. Then
temporal contextual dependency is captured by the hidden
states of LSTM units, which effectively improves robust-
ness of the 3D pose estimations over time.

The main contribution of this work is three-fold. i) We
propose a novel RPSM model that learns to recurrently in-
tegrate rich spatial and temporal long-range dependencies
using a multi-stage sequential refinement, instead of relying
on specifically manually defined body smoothness or kine-
matic constraints. ii) Casting the recurrent network models
to sequentially incorporate 3D pose geometry structural in-
formation is innovative in literature, which may also inspire
other 3D vision tasks. iii) Extensive evaluations on the pub-
lic challenging Human3.6M dataset [16] and HumanEva-I
dataset [25] show that our approach outperforms existing
methods of 3D human pose estimation by large margins.

2. Related work
Considerable research has addressed the challenge of 3D

human pose estimation. Early research on 3D monocular
pose estimation from videos involves frame-to-frame pose
tracking and dynamic models that rely on Markov depen-
dencies among previous frames, e.g. [33, 26]. The main
drawbacks of these approaches are the requirement of the
initialization pose and the inability to recover from tracking
failure. To overcome these drawbacks, more recently ap-
proaches [2, 5] focus on detecting candidate poses in each
individual frames and a post-processing step attempts to es-
tablish temporal consistent poses. Yasin et al. [38] proposed
a dual-source approach for 3D pose estimation from a sin-
gle image. They combined the 3D pose data from motion
capture system with image source annotated with 2D pose.
They transformed the estimation to a 3D pose retrieval prob-
lem. One major limitation of this approach is the time ef-
ficiency. It takes more than 20 seconds to process an im-
age. Sanzari et al. [24] proposed a hierarchical Bayesian
non-parametric model, which relies on a representation of
the idiosyncratic motion of human skeleton joints groups
and the consistency of the connected group poses is taken
into account when reconstructing the full-body pose. Their
approach achieved state-of-the-art performance on the Hu-
man3.6M [16] dataset.

Recently, deep learning has proven its ability in many
computer vision tasks, such as the 3D human pose estima-
tion. Li and Chan [19] firstly used the CNNs to regress
the 3D human pose from monocular images and proposed
two training strategies to optimize the network. Li et al.
[20] proposed to integrate the structure-learning into deep
learning framework, which consists of a convolutional neu-
ral network to extract image feature, and two following
subnetworks to transform the image features and pose into
a joint embedding. Tekin et al. [30] proposed to exploit
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Figure 2: An overview of the proposed Recurrent 3D Pose Sequence Machine architecture. Our framework predicts the 3D
human poses for all of the monocular image frames, and then sequentially refines them with multi-stage recurrent learning. At
each stage, every frame of the input sequence is sequentially passed into three neural network modules: i) a 2D pose module
extracting the image-dependent pose representations; 2) a feature adaption module for transforming the pose representations
from 2D to 3D domain; 3) a 3D pose recurrent module predicting the human joints in 3D coordinates. Note that, the
parameters of 3D pose recurrent module for all frames are shared to preserve the temporal motion coherence. Given the
initial predicted 3D joints and 2D features from the first stage, we perform the multi-stage refinement to recurrently improve
the pose accuracy. From the second stage, the previously predicted 17 joints (51 dimensions) and the 2D pose-aware features
are also posed as the input of 2D pose module and 3D pose recurrent module, respectively. The final 3D pose sequence
results are obtained after recurrently performing the multi-stage refinement.

motion information from consecutive frames and applied a
deep learning network to regress the 3D pose. Zhou et al.
[41] proposed a 3D pose estimation framework from videos
that consists of a novel synthesis between a deep-learning-
based 2D part detector, a sparsity-driven 3D reconstruction
approach and a 3D temporal smoothness prior. Zhou et al.
[40] proposed to directly embed a kinematic object model
into the deep learning. Du et al. [9] introduced an additional
built-in knowledge for reconstructing the 2D pose and for-
mulated a new objective function to estimate 3D pose from
detected 2D pose.

3. Recurrent 3D Pose Sequence Machines

As illustrated in Fig. 2, we propose a novel Recurrent
3D Pose Sequence Machine (RPSM) to resolve 3D pose se-
quence generation for monocular frames, which recurrently
refines the predicted 3D poses at multiple stages. At each
stage, RPSM consists of three consecutive modules: 1) 2D
pose module to extracts 2D pose-aware features; 2) feature
adaption module to transform the representation from 2D
to 3D domain; 3) 3D pose recurrent module to estimate 3D
poses for each frame incorporating temporal dependency in
the image sequence. These three modules are combined into
a unified framework in each stage. The monocular image
sequences are passed into multiple stages to gradually re-
fine the predicted 3D poses. We train the network parame-
ters recurrently at multiple stages in a fully end-to-end way.

3.1. Multi-stage Optimization

The 3D human pose is often represented as a set of P
joints with 3D location relative to a root joint (e.g., pelvis
joint). Some exemplar poses are shown in Fig. 1. Our goal
is to learn a mapping function that predicts the 3D pose se-
quence {S1, ..., ST } for the image sequence {I1, ..., IT },
where It is the t-th frame containing a subject and St ∈
R3×P is its corresponding 3D joint locations.

Aiming at obtaining the 3D pose Sk
t of the t-th frame

at k-th stage, 2D pose module Ψp is first employed to ex-
tract the 2D pose-aware features f t,k2D for each image by tak-
ing the image It and the previously 2D pose-aware features
f t,k−1
2D as the input. Then the extracted 2D pose-aware fea-

tures f t,k2D are fed into the feature adaption module Ψa to
generate adapted features f t,k3D . Finally, the 3D pose Sk

t is
predicted according to the input of 3D pose recurrent mod-
ule Ψr, which is composed of f t,k3D , the previously predicted
3D pose Sk−1

t and the hidden states Hk
t−1 learned from the

past frames. Formally, the f t,k2D , Sk
t , f t,k3D of the t-th stage at

k-th stage are formulated as,

f t,k2D = Ψp(It, f
t,k−1
2D ;Wp),

f t,k3D = Ψa(f t,k2D ;Wa),

Sk
t = Ψr(f t,k3D , H

k
t−1, S

k−1
t ;Wr),

(1)

where Wp, Wa, Wr are network parameters of Ψp,Ψa,Ψr,
respectively. At the first stage, the f t,02D, S0

t are set as
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Figure 3: Detailed network architecture of our proposed RPSM at the k-th stage. An input frame with the 368 × 368 size
is subsequently fed into 2D pose module, feature adaption module and 3D pose recurrent module to predict the locations of
17 joint points (51 dimensions output). The 2D pose module consists of 15 shared convolution layers across all stages and 2
specialized convolution layers for each stage. The specialized convolution layers take the shared features and the 2D pose-
aware features at previous stage as the input, and output specialized features to the feature adaption module as well as the next
stage. The feature adaption module consists of two convolution layers and one fully-connected layer with 1024 units. Finally,
the adapted features, the hidden states of the LSTM layer and previously predicted 3D poses are concatenated together as the
input of 3D pose recurrent module to produce the 3D pose of each frame. The symbol ⊕ means the concatenation operation.

1 2 3 4 5 6 7 8 9
Layer Name conv1 1 conv1 2 max 1 conv2 1 conv2 2 max 2 conv3 1 conv3 2 conv3 3

Channel (kernel-stride) 64(3-1) 64(3-1) 64(2-2) 128(3-1) 128(3-1) 128(2-2) 256(3-1) 256(3-1) 256(3-1)
10 11 12 13 14 15 16 17 18

Layer Name conv3 4 max 3 conv4 1 conv4 2 conv4 3 conv4 4 conv4 5 conv4 6 conv4 7
Channel (kernel-stride) 256(3-1) 256(2-2) 512(3-1) 512(3-1) 256(3-1) 256(3-1) 256(3-1) 256(3-1) 128(3-1)

Table 1: Details of the shared convolutional layers in 2D pose module.

zero of the same size with those of other stages, and Hk
0

is set to be a vector of zeros. The 3D pose sequence
{SK

1 , S
K
2 , . . . , S

K
T } estimated by the last K-th stage stage

is the final prediction. The sequential refinement procedure
of our RPSM enables the gradually updating of the network
status to better learn the mapping between the image se-
quence and 3D pose sequence.

3.2. 2D Pose Module

The goal of the 2D pose module is to encode each frame
in the monocular sequence with a compact representation of
the pose information, e.g. the body shape of the human. As
a matter of fact, the lower convolution layers often extract
the common low-level information, which is a very basic
representation of the human image. Hence, we divide our
proposed 2D pose module into two parts: the shared con-
volution layers across all stages and specialized pose-aware
convolution layers in each stage. The architecture of 2D
pose module is illustrated in Fig. 3(a).

The shared convolution layers, i.e., those before the con-
catenation operation shown in Fig. 3(a), consist of 15 con-
volutional layers and four max-pooling layer. The kernel
size of all shared convolutional layers are set to 3 × 3, and
the four max-pooling layers are set to have 2 × 2 kernel
with a stride of 2. The numbers of channels for the shared
convolution layers from left to right in Fig. 3(a) are 64, 64,
128, 128, 256, 256, 256, 256, 512, 512, 256, 256, 256, 256

and 128, respectively (please see Table 1 for more details).
Moreover, we append the Rectified Linear Unit(ReLU) lay-
ers on all convolution layers.

Afterwards, the shared convolution features and the ex-
tracted 2D pose-aware features at the previous stage are
concatenated and then fed into the last two convolution
layers to generate the updated 2D pose-aware features in
2D pose module. By combining the previously learned
2D pose-aware features at previous stage, the discrimina-
tive capability of the extracted 2D pose-aware features can
be gradually enhanced, leading to a better 3D pose predic-
tion. The higher convolution layers (i.e., the last 2 convo-
lution layers in Fig. 3(a)) of 2D pose module often capture
more structure-sensitive information, which should be spe-
cialized for the refinement at each stage. Thus, we train the
network parameters of the last 2 layers independently across
all stages. Finally, the 2D pose module takes the 368× 368
image as the input and outputs 128×46×46 2D pose-aware
feature maps for each image.

3.3. Feature Adaption Module

Based on the features extracted by the 2D pose mod-
ule, the feature adaption module is employed to adapt the
2D pose representations into a adapted feature space for
the later 3D pose prediction. As depicted in Fig. 3(b), the
proposed feature adaption module consists of two convolu-
tional layers and one fully connected layers. Each convo-



lution layer contains 128 different kernels with the size of
5×5, a stride of 2, and a max pooling layer with a 2×2 ker-
nel size and a stride of 2 is appended on the convolutional
layers. Finally, the convolution features are fed to a fully
connected layer with 1024 units to produce the adapted fea-
ture vector. In this way, the feature adapter module trans-
forms the 2D pose-aware features into the adapted feature
vector of 1024 dimensions.

3.4. 3D Pose Recurrent Module

Given the adapted features for all frames, we propose
a 3D pose sequence module to sequentially predict the 3D
pose sequence. In this way, the rich temporal motion pat-
terns between frames can be effectively incorporated into
the 3D pose prediction. Note that Long Short-Term Mem-
ory (LSTM) [15] has proved better performance on exploit-
ing temporal correlations than vanilla recurrent neural net-
work in many tasks, e.g., speech recognition [12] and video
description [8]. In our RPSM, the 3D pose recurrent mod-
ule resorts to the LSTM layers to capture the temporal de-
pendency in monocular sequence for refining the 3D pose
prediction for each frame.

As illustrated in Fig 3(c), the 3D pose recurrent module
is constructed by one LSTM layer with 1024 hidden cells
and an output layer that predicts the location of P = 17
joint points of the human. In particular, the hidden states
learned by the LSTM layers are capable of implicitly encod-
ing the temporal dependency across different frames of the
input sequence. As formulated in Eq. (1), the adapted fea-
tures, the previous hidden states and the previous 3D pose
predictions are concatenated together as the current input of
3D poses recurrent module. Incorporating the previous 3D
pose prediction at each stage endows our RPSM the ability
of gradually refining the pose predictions.

4. Model Training and Testing
In the training phase, our RPSM enforces the 3D pose

sequence prediction loss for all frames at all stages, which
is defined as the Euclidean distances between the prediction
for all P joints and ground truth:

L =

K∑
k=1

αk

T∑
t=1

∥∥Sk
t − S∗

t

∥∥2
2
, (2)

whereK is the number of stages, T is the length of an image
sequence, S∗

t is the ground-truth 3D pose for t-th frame, and
αk is the loss weight for each stage.

The 2D Pose Module is first pretrained with MPII Hu-
man Pose dataset [1], since this dataset provides a larger
variant of 2D pose data. Specifically, we temporally build
up an extra convolution layer upon the public shared layers
of 2D Pose Module to generate heat maps (joint confidence)
as [31], which denote pixel-wise confidence maps of the

body joints. Then we exploit the MPII Human Pose dataset
[1] to pretrain the tailored 2D Pose Module via the stochas-
tic gradient decent algorithm. As for the whole framework,
the ADAM [17] strategy is employed for parameter opti-
mization .

In order to obtain sufficient samples to train the 3D
pose recurrent module, we propose to decompose one long
monocular image sequence into several small equal clips
with C frames. According to the Eq. (2), we integrally
fine-tune the parameters of 3D pose recurrent module, the
feature adaption module and the specialized convolutional
layers of the 2D pose module in a multi-stage optimization
manner. In this way, the feature adaption module can learn
the adapted feature representation according to the Eq. (2)
for the further 3D pose estimation.

In the testing phase, every frame of the input image se-
quence is processed by our proposed RPSM in a stage-by-
stage manner. In the end, after the final stage refinement,
we output the 3D pose prediction.

5. Experiments

5.1. Experimental Settings

We perform the extensive evaluations on two publicly
available datasets: Human3.6M [16] and HumanEva-I [25].

Human3.6M dataset. The Human3.6M dataset is a re-
cently published dataset, which provides 3.6 million 3D
human pose images and corresponding annotations in a
controlled laboratory environment. It captures 11 profes-
sional actors performing in 15 scenarios under 4 difference
viewpoints. In the following experiments, we strictly fol-
low the same data partition protocol as in previous works
[41, 20, 40, 30, 9, 24]. The data from five subjects
(S1,S5,S6,S7,S8) is for training and two subjects (S9,S11)
is for testing. Note that to increase the number of train-
ing samples, the sequences from different viewpoints of the
same subject are treated as distinct sequences. Through
downsampling the frame rate from 50FPS to 2FPS, 62,437
human pose images (104 images per sequence) are obtained
for training while 21,911 images for testing (91 images per
sequence). To be more general, our RPSM is trained on
training samples from all 15 actions instead of exploiting
individual action like [41, 20].

HumanEva-I dataset. The HumanEva-I dataset con-
tains video sequences of four subjects performing six com-
mon actions(e.g., walking, jogging, boxing etc.), and it also
provides the 3D pose annotation for each frame in the video
sequences. We train our RPSM on training sequences of the
subject 1, 2 and 3 and test on the ‘validation’ sequence in
the same protocol as [38, 30, 28, 27, 18, 3, 21, 33]. Similar
as the Human3.6M dataset, the data from different camera
viewpoints is also regarded as different training samples.
Note that we have not downsampled the video sequences to



Method Direction Discuss Eating Greet Phone Pose Purchase Sitting SitDown Smoke Photo Wait Walk WalkDog WalkPair Avg.

LinKDE [16] 132.71 183.55 132.37 164.39 162.12 150.61 171.31 151.57 243.03 162.14 205.94 170.69 96.60 177.13 127.88 162.14
Li et al. [20] - 136.88 96.94 124.74 - - - - - - 168.68 - 69.97 132.17 - -
Tekin et al. [30] 102.39 158.52 87.95 126.83 118.37 114.69 107.61 136.15 205.65 118.21 185.02 146.66 65.86 128.11 77.21 125.28
Zhou et al. [41] 87.36 109.31 87.05 103.16 116.18 106.88 99.78 124.52 199.23 107.42 143.32 118.09 79.39 114.23 97.70 113.01
Zhou et al. [40] 91.83 102.41 96.95 98.75 113.35 90.04 93.84 132.16 158.97 106.91 125.22 94.41 79.02 126.04 98.96 107.26
Du et al. [9] 85.07 112.68 104.90 122.05 139.08 105.93 166.16 117.49 226.94 120.02 135.91 117.65 99.26 137.36 106.54 126.47
Sanzari et al. [24] 48.82 56.31 95.98 84.78 96.47 66.30 107.41 116.89 129.63 97.84 105.58 65.94 92.58 130.46 102.21 93.15
Ours 58.02 68.16 63.25 65.77 75.26 61.16 65.71 98.65 127.68 70.37 93.05 68.17 50.63 72.94 57.74 73.10

Table 2: Quantitative comparisons on Human3.6M dataset using 3D pose errors (in millimeter) for different actions of
subjects 9 and 11. The entries with the smallest 3D pose errors for each category are bold-faced. Our RPSM achieves the
significant improvement over all compared state-of-the-art approaches, i.e. reduces mean error by 21.52%.

Walking Jogging Boxing
Methods S1 S2 S3 Avg. S1 S2 S3 Avg. S1 S2 S3 Avg.

Simo-Serra et al. [28] 99.6 108.3 127.4 111.8 109.2 93.1 115.8 108.9 - - - -
Radwan et al. [21] 75.1 99.8 93.8 89.6 79.2 89.8 99.4 89.5 - - - -
Wang et al. [33] 71.9 75.7 85.3 77.6 62.6 77.7 54.4 71.3 - - - -
Du et al. [9] 62.2 61.9 69.2 64.4 56.3 59.3 59.3 58.3 - - - -
Simo-Serra et al. [27] 65.1 48.6 73.5 62.4 74.2 46.6 32.2 56.7 - - - -
Bo et al. [3] 45.4 28.3 62.3 45.3 55.1 43.2 37.4 45.2 42.5 64.0 69.3 58.6
Kostrikov et al. [18] 44.0 30.9 41.7 38.9 57.2 35.0 33.3 40.3 - - - -
Tekin et al. [30] 37.5 25.1 49.2 37.3 - - - - 50.5 61.7 57.5 56.6
Yasin et al. [38] 35.8 32.4 41.6 36.6 46.6 41.4 35.4 38.9 - - - -
Ours 26.5 20.7 38.0 28.4 41.0 29.7 29.1 33.2 39.4 57.8 61.2 52.8

Table 3: Quantitative comparisons on HumanEva-I dataset using 3D pose errors (in millimeter) for the “Walking”,
“Jogging” and “Boxing” sequences. ’-’ indicates the corresponding method has not reported the accuracy on that action.
The entries with the smallest 3D pose errors for each category are bold-faced. Our RPSM outperforms all the compared
state-of-the-art methods by a clear margin.

obtain more samples for training.

Evaluation metric. Following [41, 9, 30], we employ
the popular 3D pose error metric [28] , which calculates the
Euclidean errors on all joints and all frames up to transla-
tion. In the following section, we will report the 3D pose
error metric for all the experimental comparisons and anal-
ysises.

Implementation Details: Our RPSM is implemented by
using Torch7 [7] deep learning toolbox. We follow [12]
to build the LSTM memory cells, except that the peep-
hole connections between cell and gates are omitted. The
loss weights αk for each stage are all set to 1. In total,
three-stage refinements are performed for all our experi-
ments since only unnoticeable performance difference is
observed using more stages. Following [41, 20], the input
image is cropped around the human. To keep the human
ratio, we crop a square image of the subject from the im-
age according to the bounding box provided by the dataset.
Then we resize the image region inside the bounding box
into 368×368 resolution before feeding it into the network.
Moreover, we augment the training data only by random
scaling with factors in [0.9,1.1]. Note that to transform
the absolute locations of joint points into the [0,1] range,
max-min normalization strategy is applied. In the testing
phase, the predicted 3D pose is transform to the origin scale

according to the maximum and minimal value of the pose
from training frames. During the training, the Xavier ini-
tialization method [11] was used to initialize the weights of
our RPSM. The decay is set as 1e−4 and base learning rate
of 1e−3 is employed for training. It took about 2 days to
train a 3-stage RPSM with 50 epochs on single NVIDIA
GeForce GTX TITAN X with 12GB memory. In the testing
phase, it takes about 50 ms to process an image.

5.2. Comparisons with state-of-the-art methods

Comparison on Human3.6M: We compare our RPSM
with the state-of-the art methods on Human3.6M [16] and
HumanEva-I [25] dataset. These state-of-the-art methods
are LinKDE [16], Tekin et al. [30], Li et al. [20], Zhou et
al. [41] (CNN based), Zhou et al. [40], Du et al. [9] and
Sanzari et al. [24].

The results are summarized in Table 2. As one can
see from Table 2, our proposed RPSM model significantly
outperforms all compared methods with mean error re-
duced by 31.85% compared with [40] and 21.52% com-
pared with [24]. Note that some compared methods, e.g.,
[20, 30, 9, 41, 40], also employ deep learning techniques.
Especially, Zhou et al. [40]’s method has used the recently
published Residual Network [13]. This superior perfor-
mance achieved by RPSM demonstrates that utilizing multi-



Figure 4: Empirical study on the qualitative comparisons on Human3.6M dataset. The 3D pose are visualized from the side
view and the camera are also depicted. Zhou et al. [41], Zhou et al. [40], our RPSM and the ground truth are illustrated from
left to right, respectively. Our RPSM achieves much more accurate estimations than the methods of Zhou et al. [41] and
Zhou et al. [40]. Best view in color.

Method Direction Discuss Eating Greet Phone Pose Purchase Sitting SitDown Smoke Photo Wait Walk WalkDog WalkPair Avg.

RPSM-1-stage 62.89 74.74 67.86 73.33 79.76 67.48 76.19 100.21 148.03 75.95 100.26 75.82 58.03 78.74 62.93 80.15
RPSM-2-stage 58.96 68.50 65.64 68.18 78.41 62.82 67.04 100.63 136.72 73.35 96.87 67.96 51.64 77.27 59.31 75.55
RPSM-3-stage 58.02 68.16 63.25 65.77 75.26 61.16 65.71 98.65 127.68 70.37 93.05 68.17 50.63 72.94 57.74 73.10

RPSM 1stage seq 1 70.46 83.36 76.46 80.96 88.14 76.00 92.39 116.62 163.14 85.87 111.46 83.60 65.38 95.10 73.54 90.83
RPSM 3stage seq 1 61.94 75.84 65.25 71.28 79.39 67.73 77.88 105.47 153.58 76.01 101.84 74.12 56.07 85.63 64.78 81.12
RPSM 1stage seq 5 62.89 74.74 67.86 73.33 79.76 67.48 76.19 100.21 148.03 75.95 100.26 75.82 58.03 78.74 62.93 80.15

RPSM 1stage seq 10 66.73 76.82 73.57 76.56 84.80 70.57 75.44 110.70 143.10 80.35 103.61 75.66 58.52 80.55 66.19 82.88
RPSM-3-stage no MPII 91.58 109.35 93.28 98.52 102.16 93.87 118.15 134.94 190.6 109.39 121.49 101.82 88.69 110.14 105.56 111.3
RPSM-3-stage sharing 58.36 66.52 63.37 64.5 72.22 59.39 63.9 90.73 129.99 68.26 93.86 65.22 48.47 70.53 56.26 71.44

Table 4: Top five rows: empirical study on different number of refinement stages. Middle two rows: empirical comparisons
by different sequence lengths (i.e., 1, 5, 10) for each clip. Note that the results are evaluated by a single-stage RPSM. Bottom
two rows: performance of RPSM variants. The entries with the smallest 3D pose errors on Human3.6m dataset for each
category are bold-faced.

stage RPSM is simple yet powerful in capturing complex
contextual features within images and learning temporal de-
pendency within image sequences, which are critical for es-
timating 3D pose sequence.

Comparison on HumanEva-I: On this dataset, we
compare our RPSM against methods which rely on several
kinds of separate processing steps. These methods include
discriminative regressions[3, 18], 2D pose detectors based
[28, 27, 33, 38], CNN-based regressions [30]. For fair com-
parison, our RPSM also predicts the 3D pose consisting of
14 joints, i.e., left/right shoulder, elbow, wrist, left/right hip
knee, ankle, head top and neck, as [38].

Table 3 illustrates the performance comparisons between
our RPSM with compared methods. It is obvious that our
RPSM model obtains substantially lower 3D pose errors
than the compared methods, and achieves new state-of-the-
art performance on all Walking, Jogging and Boxing se-
quences. In addition, in terms of the time efficiency, com-
pared with [3] which takes around three minutes per im-
age and [38] which takes more than 25 seconds per im-

age, our RPSM model only costs 50ms per image. This
demonstrate the effectiveness and efficiency of our pro-
posed RPSM model.

5.3. Component Analysis

Effectiveness of multi-stage refinement: To validate
the superiority of the proposed multi-stage refinement of
our RPSM, we conduct the following experiment: em-
ploying one, two, three stages for human pose estimation
and denote them as “RPSM-1-stage”, “RPSM-2-stage” and
“RPSM-3-stage”. The evaluations are performed on the
Human3.6M dataset from the qualitative and quantitative
aspects. The top five rows of Table 4 illustrates the com-
parisons of estimating 3D pose errors for using different
number of stages. As one can see from Table 4, the perfor-
mance increases monotonically within 3 stages. Moreover,
the single/multi-stage performance without temporal de-
pendency is also compared in Table. 4 (denoted as “RPSM-
1stage seq 1” and “RPSM-3stage seq 1”, respectively). As
illustrated in Table. 4, RPSM-3stage seq 1 has achieved



Figure 5: Qualitative comparisons of different stage refinement on Human3.6M dataset. The estimated 3D skeletons are
reprojected into the images and shown by themselves from the side view (next to the images). The figures from left to
right correspond to the estimated 3D poses generated by the 1st-stage, 2nd-stage, 3rd-stage of our RPSM and ground truth,
respectively. We can observe that the predicted human 3D joints are progressively corrected along with the multi-stage
sequential learning. Best viewed in color.

much lower 3D pose errors than RPSM-1stage seq 1 (81.12
vs 90.83). This validates that the effectiveness of multi-
stage refinement even when temporal information is ig-
nored. Thanks to the exploited richer contextual informa-
tion, our RPSM can learn more robust 2D pose-aware fea-
tures and the representation of 3D pose sequences. Exem-
plar visual results on three different stages are shown in
Fig. 5. It can be seen that the joint predictions are progres-
sively corrected by performing multi-stage refinement.

Pre-training and Weight Sharing: To evaluate the per-
formance without pre-training, we have only employed Hu-
man3.6m 2D pose data and annotations to train the 2D pose
module. We denote this version of our RPSM as “RPSM-
3-stage no MPII”. The result is reported in the bottom two
rows of Table. 4. As one can see from Table. 4, RPSM-
3-stage no MPII performs quite worse than RPSM-3-stage.
This may be due to that Human3.6m 2D pose data, com-
pared with MPII dataset, is less challenging for CNN to
learn a rich 2D pose presentation. Note that according to
the bottom row of Table. 4, the performance of sharing all
layers in the 2D pose module (denoted as “RPSM-3stage-
sharing”) is slightly better than the partially sharing one (de-
noted as “RPSM-3-stage”). However, the training time will
significantly increased. Thus, we decide to choose partially
sharing manner.

Importance of temporal dependency: To study the ef-
fectiveness of incorporating temporal dependency, we also
evaluate the variants of our single-stage RPSM using differ-
ent clip lengths, i.e., 1, 5 and 10, named as “RPSM-1stage-
seq C”, where C denotes the frame number of clips for
training. Note that, when C is equal to 1, no temporal in-
formation is considered and thus the recurrent LSTM layer

in 3D pose errors is replaced with a fully connected layer
with the same units as the LSTM. Results of using differ-
ent clip length are reported in Table 4. From the compari-
son results, the importance of temporal dependency is well
demonstrated. Considering temporal dependency meth-
ods (i.e., RPSM 1stage seq 5 and RPSM 1stage seq 10)
all outperform the RPSM 1stage seq 1 in a clear margin
(about 10% reduction of the mean joint errors on the Hu-
man3.6M dataset). The minor performance difference be-
tween RPSM 1stage seq 5 and RPSM 1stage seq 10 may
be due to effect of temporal inconsistency, which has higher
probability to occur in long clips. Moreover, it also should
be noted that “RPSM 1stage seq 1” shows superiority over
all state-of-the-art approaches owing to the contribution of
the proposed 2D pose module and feature adaption module.

6. Conclusion

We have proposed a novel Recurrent 3D Pose Sequence
Machines (RPSM) for estimating 3D human pose from a
sequence of monocular images. Through the proposed uni-
fied architecture with 2D pose, feature adaption and 3D
pose recurrent modules, our RPSM can learn to recurrently
integrate rich spatio-temporal long-range dependencies in
an implicit and comprehensive way. We also proposed to
employ multiple sequential stages to refine the estimation
results via the 3D pose geometry information. The exten-
sive evaluations on two public 3D human pose dataset val-
idate the effectiveness and superior performance of the our
RPSM. In future work, we will extend the proposed frame-
work for other sequence-based human centric analysis such
as human action and activity recognition.
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